Aivojen neuronit - rakenne, luokittelu ja reitit

Keskushermosto (CNS) koostuu aivoista ja selkäytimestä. Onko se liitetty kehon eri osiin perifeeristen hermojen avulla? moottori ja herkkä. Katso myös NERVOUS SYSTEM.

Aivot? symmetrinen rakenne, kuten useimmat muutkin kehon osat. Syntymähetkellä sen paino on noin 0,3 kg, kun taas aikuisessa se on ?? n. 1,5 kg. Aivojen ulkoisessa tutkimuksessa kiinnitetään huomiota kahteen suurempaan pallonpuoliskoon, jotka peittävät syvemmät muodot. Puolipallojen pinta on peitetty urilla ja kierteillä, jotka lisäävät aivokuoren pintaa (aivojen ulkokerros). Pikkupellin takana on pinta, jonka pinta on ohuempi. Suurten pallonpuoliskojen alapuolella on selkäytimeen kulkeutuva aivorunko. Hermot jättävät runko- ja selkäytimen, jota pitkin tieto virtaa sisäisistä ja ulkoisista reseptoreista aivoihin, ja signaalit lihaksille ja rauhasille virtaavat vastakkaiseen suuntaan. 12 paria kallon hermoja liikkuu pois aivoista.

Aivojen sisällä erottuu harmaa aine, joka koostuu pääasiassa hermosolujen ruumiista ja muodostaa kuoren ja valkoisen aineen? hermokuituja, jotka muodostavat reitit (traktit), jotka yhdistävät aivojen eri osat, sekä muodostavat hermoja, jotka ulottuvat keskushermoston rajojen ulkopuolelle ja menevät eri elimiin.

Onko aivot ja selkäydin suojattu luukuorilla? kallo ja selkä. Aivojen ja luun seinien välillä on kolme kuoret: ulompi? dura mater, sisäinen? pehmeä ja niiden välillä? ohut arachnoidi kuori. Membraanien välinen tila on täytetty aivo-selkäydinnesteellä, joka on samanlainen koostumuksessa kuin veriplasma, tuotettuna intraserebraalisissa onteloissa (aivojen kammiot) ja kiertää aivoissa ja selkäytimessä, joka toimittaa sen ravintoaineiden ja muiden elintärkeän toiminnan kannalta tarpeellisten tekijöiden kanssa.

Aivojen veren tarjontaa tarjoavat pääasiassa kaulavaltimot; aivojen pohjalla ne on jaettu suuriin haaroihin, jotka menevät sen eri osiin. Vaikka aivojen paino on vain 2,5% ruumiinpainosta, se saa jatkuvasti, päivällä ja yöllä, 20% kehosta ja siten hapesta kiertävästä verestä. Itse aivojen energiavarat ovat erittäin pieniä, joten se on erittäin riippuvainen hapen saannista. On olemassa suojamekanismeja, jotka voivat tukea aivoveren virtausta verenvuodon tai vamman sattuessa. Aivoverenkierron piirre on myös ns. veri-aivoesteet. Se koostuu useista kalvoista, jotka rajoittavat verisuonten seinien läpäisevyyttä ja monien yhdisteiden virtausta verestä aivojen aineeseen; täten tämä esto suorittaa suojaustoimintoja. Esimerkiksi monet lääkeaineet eivät tunkeudu sen läpi.

CNS-soluja kutsutaan neuroneiksi; niiden tehtävä ?? tietojenkäsittely. Ihmisen aivoissa 5 - 20 miljardia neuronia. Aivojen rakenteessa on myös glia- soluja, noin 10 kertaa enemmän kuin neuronit. Glia täyttää neuronien välisen tilan, muodostaen hermokudoksen tukikehyksen ja suorittaa myös aineenvaihdunta- ja muita toimintoja.

Neuroni, kuten kaikki muutkin solut, ympäröi puoliläpäisevää (plasman) kalvoa. Kahdesta prosessin tyypistä poikkeaa soluelimestä? dendriitit ja aksonit. Useimmilla neuroneilla on monia haarautuvia dendriittejä, mutta vain yksi aksoni. Dendriitit ovat yleensä hyvin lyhyitä, kun taas aksonin pituus vaihtelee muutamasta senttimetristä useisiin metreihin. Neuronin kehossa on ydin ja muut organellit, samat kuin muissa kehon soluissa (katso myös CELL).

Hermoston impulssit. Tietojen välittäminen aivoissa sekä hermosto kokonaisuudessaan toteutetaan hermoimpulssien avulla. Ne levisivät suuntaan solun rungosta aksonin päätelaitteeseen, joka voi haarautua, muodostaen joukon päätteitä, jotka ovat kosketuksissa muiden neuronien kanssa kapean raon kautta? synapse; kemikaalien välityksellä välitetään impulssien siirtoa synapsin kautta? välittäjäaineiden.

Hermosto aiheuttaa yleensä dendriittejä? neuronin ohuet haarautumisprosessit, jotka ovat erikoistuneet tiedon hankkimiseen muista neuroneista ja sen lähettämisestä neuronin kehoon. Dendriiteissä ja pienemmässä määrässä solun rungossa on tuhansia synapseja; se on aksonisynapsien kautta, jotka kantavat tietoa neuronin kehosta, välittävät sen muiden neuronien dendriiteille.

Aksonin pää, joka muodostaa synapsin presynaptisen osan, sisältää pieniä vesikkeleitä neurotransmitterin kanssa. Kun impulssi saavuttaa presynaptisen kalvon, vesikkelin neurotransmitteri vapautuu synaptiseen lohkoon. Axonin pää sisältää vain yhden tyyppisen neurotransmitterin, usein yhdessä yhden tai useamman tyyppisen neuromodulaattorin kanssa (katso alla Brain-neurokemia).

Aksonin presynaptisesta membraanista vapautunut neurotransmitteri sitoutuu postsynaptisen neuronin dendriittien reseptoreihin. Aivot käyttävät erilaisia ​​neurotransmittereita, joista kukin liittyy sen erityiseen reseptoriin.

Dendriittien reseptorit on liitetty kanaviin puoliläpäisevässä postsynaptisessa membraanissa, joka ohjaa ionien liikkumista kalvon läpi. Rauhassa neuronin sähköpotentiaali on 70 millivolttia (lepopotentiaali), kun taas kalvon sisäpuoli latautuu negatiivisesti ulomman suhteen. Vaikka on olemassa erilaisia ​​välittäjiä, niillä kaikilla on stimuloiva tai inhiboiva vaikutus postsynaptiseen neuroniin. Stimuloiva vaikutus toteutetaan parantamalla tiettyjen ionien, pääasiassa natriumin ja kaliumin, virtausta kalvon läpi. Tämän seurauksena sisäpinnan negatiivinen varaus vähenee? depolarisaatio tapahtuu. Jarrutusvaikutus tapahtuu pääasiassa kaliumin ja kloridin virtauksen muutoksen seurauksena, minkä seurauksena sisäpinnan negatiivinen varaus muuttuu suuremmaksi kuin levossa ja hyperpolarisaatio tapahtuu.

Neuronin tehtävänä on integroida kaikki synapsien kautta havaitut vaikutukset kehoonsa ja dendriitteihin. Koska nämä vaikutukset voivat olla ärsyttäviä tai inhiboivia eivätkä ole samanaikaisesti ajan kanssa, neuronin on laskettava synaptisen aktiivisuuden kokonaisvaikutus ajan funktiona. Jos eksitatiivinen vaikutus vallitsee inhiboivaa ja kalvon depolarisointia ylittäessä kynnysarvon, onko tietty osa neuronin kalvosta aktivoitunut? sen aksonin pohjan alueella (axon tubercle). Tässä natrium- ja kaliumionien kanavien avaamisen seurauksena syntyy toimintapotentiaali (hermoimpulssi).

Tämä potentiaali ulottuu edelleen pitkin aksonia sen päähän nopeudella 0,1 m / s - 100 m / s (sitä paksumpi aksoni, sitä suurempi johtumisnopeus). Kun toimintapotentiaali saavuttaa aksonin loppuun, aktivoituu toinen ionikanavien tyyppi riippuen mahdollisesta erosta? kalsiumkanavat. Niiden mukaan kalsium tulee aksoniin, mikä johtaa vesikkeleiden mobilisointiin neurotransmitterin kanssa, joka lähestyy presynaptista kalvoa, sulautuu siihen ja vapauttaa neurotransmitterin synapsiin.

Myeliini ja glia-solut. Monet aksonit on päällystetty myeliinikalvolla, joka muodostuu toistuvasti kierretystä glial-solujen kalvosta. Myeliini koostuu pääasiassa lipideistä, jotka antavat tyypillisen ulkonäön aivojen ja selkäytimen valkoiselle aineelle. Myeliinivaipan ansiosta aksoniaktiviteetin nopeus kasvaa, koska ionit voivat liikkua aksonikalvon läpi vain paikoissa, joita myeliini ei kata? ns kuuntelut Ranvier. Kuuntelujen välissä impulsseja suoritetaan myeliinivaippaa pitkin sähkökaapelin kautta. Koska kanavan avaaminen ja ionien kulku sen läpi vie jonkin aikaa, kanavien jatkuvan avaamisen poistaminen ja niiden laajuuden rajoittaminen pieniin kalvon alueisiin, joita myeliini ei peitä, kiihdyttää aksonien johtumista noin 10 kertaa.

Vain osa glialisoluista osallistuu hermosolujen (Schwann-solujen) tai hermorakenteiden (oligodendrosyyttien) muodostumiseen. Paljon lukuisat glia- solut (astrosyytit, mikrogliosyytit) suorittavat muita toimintoja: ne muodostavat hermokudoksen tukirungon, tarjoavat sen aineenvaihduntatarpeet ja toipuvat vammoista ja infektioista.

Harkitse yksinkertaista esimerkkiä. Mitä tapahtuu, kun otamme kynän pöydälle? Lyijykynästä heijastunut valo keskittyy silmään linssin kanssa ja suuntautuu verkkokalvoon, jossa lyijykynän kuva näkyy; vastaava solu havaitsee sen, mistä signaali menee aivojen tärkeimmille aistien välittäville ytimille, jotka sijaitsevat talamuksessa (visuaalinen tuberkuloosi), pääasiassa siinä osassa, jota kutsutaan sivusuuntaiseksi kehoksi. On aktivoituja lukuisia neuroneja, jotka vastaavat valon ja pimeyden jakautumiseen. Sivuttaisen kuristetun rungon hermosolujen akselit kulkevat ensisijaisen visuaalisen aivokuoren kohdalla, joka sijaitsee suurten pallonpuoliskojen niskakalvon sisällä. Impulssit, jotka tulevat talamuksesta tähän aivokuoren osaan, muuttuvat monimutkaiseksi kortikaalisten neuronien päästöjen sekvenssiksi, joista osa reagoi lyijykynän ja pöydän väliseen rajaan, toiset ?? lyijykynän kuvan kulmissa jne. Ensisijaisesta visuaalisesta aivokuoresta tietoa aksoneista tulee assosiatiiviseen visuaaliseen aivokuoreen, jossa kuvion tunnistaminen tapahtuu, tässä tapauksessa lyijykynä. Tunnistus tässä aivokuoren osassa perustuu aikaisemmin kertyneeseen tietoon esineiden ulkoisista ääriviivoista.

Liikkumissuunnittelu (ts. Lyijykynän ottaminen) tapahtuu todennäköisesti aivopuoliskon etupoikkien aivokuoressa. Samassa aivokuoren alueella sijaitsevat moottorin neuronit, jotka antavat käsiä käden ja sormien lihaksille. Käden lähestymistapaa lyijykynään ohjaa visuaalinen järjestelmä ja interoreceptorit, jotka havaitsevat lihasten ja nivelten aseman, josta tiedot tulevat keskushermostoon. Kun otamme kynän kädessä, sormenpäillä olevat reseptorit kertovat meille, jos sormet pitävät lyijykynää hyvin ja mitä vaivaa pitää olla. Jos haluamme kirjoittaa nimemme lyijykynään, meidän on aktivoitava muita aivoihin tallennettuja tietoja, jotka tarjoavat tämän monimutkaisemman liikkeen, ja visuaalinen ohjaus auttaa lisäämään sen tarkkuutta.

Yllä olevassa esimerkissä voidaan nähdä, että melko yksinkertaisen toiminnan suorittaminen käsittää aivojen laajoja alueita, jotka ulottuvat aivokuoresta subkorttisiin alueisiin. Kun puhetta tai ajattelua liittyy monimutkaisempaan käyttäytymiseen, muut hermopiirit aktivoidaan, ja ne kattavat entistä laajemmat aivojen alueet.

Aivot voidaan jakaa kolmeen pääosaan: esi-aivoon, aivoriihi ja aivopuoli. Eturintamassa aivopuoliskot, thalamus, hypotalamus ja aivolisäke (yksi tärkeimmistä neuroendokriinirauhasista) erittyvät. Aivoriihi koostuu mullasta, ponsista (pons) ja keski-aivosta.

Suuri puolipallo? suurin osa aivoista aikuisilla on noin 70% sen painosta. Tavallisesti puolipallot ovat symmetrisiä. Niitä yhdistää massiivinen aksonipaketti (corpus callosum), joka tarjoaa tiedonvaihtoa.

Jokainen pallonpuolisko koostuu neljästä lohkosta: etu-, parietaalinen, ajallinen ja niskakalvo. Eturatsasten aivokuoressa on keskuksia, jotka säätelevät liikkuvuutta ja luultavasti myös suunnittelu- ja ennakointikeskuksia. Parietaalisten lohkojen aivokuoressa, joka sijaitsee etuosan takana, on kehon tunteita, mukaan lukien kosketuksen tunne ja nivel- ja lihasten tunteet. Parietaalisen lohkon sivuttain vieressä on ajallinen, jossa ensisijainen kuulokuori sijaitsee, sekä puhe- ja muut korkeammat toiminnot. Aivojen takana on aivopuolen lohko, joka sijaitsee aivopuolen yläpuolella; sen kuori sisältää visuaalisia tunteita.

Kuoren alueita, jotka eivät liity suoraan liikkeiden säätelyyn tai aistitietojen analyysiin, kutsutaan assosiatiiviseksi kuoreksi. Näissä erikoistuneissa vyöhykkeissä muodostetaan assosiatiivisia yhteyksiä aivojen eri alueiden ja osien välille, ja niistä tuleva tieto on integroitu. Assosiatiivinen cortex tarjoaa sellaisia ​​monimutkaisia ​​toimintoja kuin oppiminen, muisti, puhe ja ajattelu.

Subkortikaaliset rakenteet. Aivokuoren alla on useita tärkeitä aivorakenteita tai ytimiä, jotka ovat neuronien klustereita. Näitä ovat thalamus, basaaliganglium ja hypotalamus. Thalamus ?? tämä on tärkein aistin lähettävä ydin; hän saa tietoa aisteista ja puolestaan ​​välittää sen aistinvaraisen aivokuoren sopiviin osiin. On myös muita kuin spesifisiä vyöhykkeitä, jotka liittyvät lähes koko aivokuoreen, ja luultavasti tarjoavat sen aktivoinnin prosessit ja ylläpitävät herätystä ja huomiota. Basal ganglia ?? Tämä on joukko ytimiä (ns. Kuori, vaalea pallo ja caudate-ydin), jotka osallistuvat koordinoitujen liikkeiden säätelyyn (aloittaa ja lopettaa ne).

Hypotalamus? pieni alue aivojen pohjalla, talamuksen alapuolella. Runsas veri, hypotalamus? tärkeä keskus, joka ohjaa kehon homeostaattisia toimintoja. Se tuottaa aineita, jotka säätelevät aivolisäkkeen hormonien synteesiä ja vapautumista (ks. Myös HYPOPHYSIS). Hypotalamuksessa on monia ytimiä, jotka suorittavat erityisiä toimintoja, kuten veden aineenvaihdunnan säätely, varastoituneen rasvan jakautuminen, kehon lämpötila, seksuaalinen käyttäytyminen, uni ja herätys.

Aivorunko sijaitsee kallon pohjassa. Se yhdistää selkäydin etureunaan ja se koostuu munasolkuista, poneista, keskimmäisestä ja diencephalonista.

Keski- ja välitaudin sekä koko rungon läpi kulkevat selkäytimeen johtavat moottorireitit sekä muutamat herkät polut selkäytimestä aivojen yläosiin. Keskipitkän alla on silta, jonka hermokuidut yhdistyvät aivopuoleen. Rungon alin osa? ydin ?? menee suoraan selkärangan. Medulla oblongatassa sijaitsevat keskukset, jotka säätelevät sydämen ja hengityksen toimintaa ulkoisista olosuhteista riippuen, ja myös kontrolloivat verenpainetta, mahalaukun ja suoliston liikkuvuutta.

Rungon tasolla reitit, jotka yhdistävät jokaisen aivopuoliskon aivopuolella, leikkaavat. Siksi kukin puolipallot ohjaavat kehon vastakkaista puolta ja on yhdistetty aivopuolen vastakkaiseen pallonpuoliskoon.

Aivopuoli sijaitsee suurten pallonpuoliskojen okcipitaalilohkojen alapuolella. Sillan polkujen kautta se on liitetty aivojen päällisiin osiin. Aivopuoli säätelee hienovaraisia ​​automaattisia liikkeitä, koordinoi eri lihasryhmien aktiivisuutta stereotyyppisiä käyttäytymistapoja suoritettaessa; hän myös jatkuvasti valvoo pään, vartalon ja raajojen asemaa, ts. mukana tasapainon ylläpitämisessä. Viimeisimpien tietojen mukaan aivopuolella on erittäin merkittävä rooli motoristen taitojen muodostamisessa, joka auttaa muistamaan liikkeitä.

Muut järjestelmät. Limbinen järjestelmä? laaja verkosto toisiinsa yhdistettyjä aivojen alueita, jotka säätelevät emotionaalisia tiloja sekä tarjoavat oppimista ja muistia. Limbisen järjestelmän muodostavia ytimiä ovat amygdala ja hippokampus (sisältyvät ajalliseen lohkoon) sekä hypotalamus ja ns. Ydin. läpinäkyvä väliseinä (sijaitsee aivojen subkortikaalisilla alueilla).

Verkkokalvon muodostuminen? neuronien verkko, joka ulottuu koko runkoon thalamukseen ja liittyy edelleen aivokuoren laajoihin alueisiin. Se osallistuu unen ja herätyksen säätelyyn, ylläpitää kuoren aktiivista tilaa ja auttaa kiinnittämään huomiota tiettyihin esineisiin.

Pään pinnalle sijoitettujen tai aivojen aineeseen viemien elektrodien avulla on mahdollista vahvistaa aivojen sähköinen aktiivisuus sen solujen purkautumisen vuoksi. Aivojen sähköisen aktiivisuuden tallentamista elektrodien kanssa pään pinnalle kutsutaan elektroenkefalogrammiksi (EEG). Se ei salli yksittäisen neuronin purkauksen kirjaamista. Vain tuhansien tai miljoonien hermosolujen synkronoidun aktiivisuuden seurauksena tallennetussa käyrässä esiintyy huomattavia värähtelyjä (aaltoja).

EEG: n jatkuvalla rekisteröinnillä paljastuu syklisiä muutoksia, jotka heijastavat yksilön yleistä toiminnan tasoa. Aktiivisen herätyksen tilassa EEG tallentaa matalan amplitudin ei-rytmisiä beeta-aaltoja. Suljetuissa silmissä heräävässä tilassa aallot, joiden taajuus on 7–12 sykliä sekunnissa, ovat vallitsevia. Unen esiintymistä ilmaisee korkean amplitudin hidas aallot (delta-aallot). Unelmien aikana beta-aallot tulevat uudelleen esiin EEG: ssä, ja EEG: n perusteella voidaan luoda väärä vaikutelma, että henkilö on hereillä (siis termi "paradoksaalinen uni"). Unelmiin liittyy usein nopeat silmäliikkeet (suljetut silmäluomet). Niinpä unelmia kutsutaan myös nukkumiseksi nopean silmäliikkeen avulla (katso myös SLEEP). EEG: llä voit diagnosoida joitakin aivosairauksia, erityisesti epilepsiaa (ks. EPILEPSY).

Jos rekisteröit aivojen sähköisen aktiivisuuden tietyn ärsykkeen (visuaalinen, kuulo tai tunto) aikana, voit tunnistaa ns. herätetyt mahdollisuudet? tietyn neuroniryhmän synkroniset päästöt, jotka syntyvät vastauksena tiettyyn ulkoiseen ärsykkeeseen. Tutkittujen potentiaalien tutkimus mahdollisti aivotoimintojen lokalisoinnin selkiyttämisen erityisesti liittääkseen puheen funktion tietyille ajallisten ja etummaisten lohkojen alueille. Tämä tutkimus auttaa myös arvioimaan aistinjärjestelmien tilaa potilailla, joilla on heikentynyt herkkyys.

Tärkeimmät aivojen välittäjäaineet ovat asetyylikoliini, norepinefriini, serotoniini, dopamiini, glutamaatti, gamma-aminovoihappo (GABA), endorfiinit ja enkefaliinit. Näiden hyvin tunnettujen aineiden lisäksi suuri osa muista, joita ei vielä ole tutkittu, toimivat todennäköisesti aivoissa. Jotkut neurotransmitterit toimivat vain tietyillä aivojen alueilla. Näin ollen endorfiinit ja enkefaliinit löytyvät vain kivun impulsseja johtavista reiteistä. Muita välittäjiä, kuten glutamaattia tai GABA: ta, levitetään laajemmin.

Neurotransmitterien toiminta. Kuten jo todettiin, postsynaptiseen kalvoon vaikuttavat välittäjäaineet muuttavat sen johtavuutta ioneille. Usein tämä tapahtuu toisen "välittäjä" -järjestelmän, esimerkiksi syklisen adenosiinimonofosfaatin (cAMP), synnynnäisen neuronin aktivoinnin kautta. Neurotransmitterien toimintaa voidaan muuttaa toisen neurokemiallisten aineiden luokan vaikutuksesta? peptidien neuromodulaattorit. Presynaptisen kalvon vapauttama samanaikaisesti välittäjän kanssa, heillä on kyky parantaa tai muuten muuttaa mediaattoreiden vaikutusta postsynaptiseen kalvoon.

Äskettäin löydetty endorfiini- enkefaliinijärjestelmä on tärkeä. Enkefaliinit ja endorfiinit? pieniä peptidejä, jotka estävät kipua impulssien johtumista sitoutumalla keskushermostoon kuuluviin reseptoreihin, mukaan lukien kuoren korkeammilla vyöhykkeillä. Tämä neurotransmittariperhe estää subjektiivisen tuskan havaitsemisen.

Psykoaktiiviset lääkkeet? aineet, jotka voivat spesifisesti sitoutua tiettyihin aivojen reseptoreihin ja aiheuttaa käyttäytymismuutoksia. Tunnistettiin useita toimintamekanismeja. Jotkut vaikuttavat neurotransmitterien synteesiin, toisiin ?? niiden kerääntymisestä ja vapautumisesta synaptisista vesikkeleistä (esimerkiksi amfetamiini aiheuttaa noradrenaliinin nopean vapautumisen). Kolmas mekanismi on sitoutua reseptoreihin ja jäljitellä luonnollisen neurotransmitterin vaikutusta, esimerkiksi LSD: n (lysergiinihappodietyyli- amidin) vaikutus selittyy sen kyvyllä sitoutua serotoniinireseptoreihin. Neljäs toimintatyyppinen huume? reseptorin salpaus, so. antagonismi neurotransmitterien kanssa. Tällaiset laajalti käytetyt antipsykootit, kuten fenotiatsiinit (esimerkiksi klooripromaiini tai amina- siini), estävät dopamiinireseptoreita ja siten vähentävät dopamiinin vaikutusta postsynaptisiin neuroneihin. Lopuksi viimeinen yhteinen toimintamekanismi? neurotransmitterin inaktivoitumisen estäminen (monet torjunta-aineet estävät asetyylikoliinin inaktivoitumista).

On jo pitkään ollut tiedossa, että morfiinilla (puhdistettu oopiomonotuote) ei ole vain voimakasta kipulääkettä (analgeettista), vaan myös kyky aiheuttaa euforiaa. Siksi sitä käytetään lääkkeenä. Morfiinin vaikutus liittyy sen kykyyn sitoutua reseptoreihin ihmisen endorfiini- enkefaliinijärjestelmässä (katso myös DRUG). Tämä on vain yksi monista esimerkeistä siitä, että erilaista biologista alkuperää oleva kemiallinen aine (tässä tapauksessa kasviperäinen) pystyy vaikuttamaan eläinten ja ihmisten aivojen toimintaan vuorovaikutuksessa tiettyjen neurotransmitterijärjestelmien kanssa. Toinen tunnettu esimerkki? curare, joka on peräisin trooppisesta kasvista ja joka pystyy estämään asetyylikoliinireseptoreita. Etelä-Amerikan intiaanit rasvoittivat curare-nuolenpäät käyttämällä sen halvaavaa vaikutusta, joka liittyi neuromuskulaarisen siirron estoon.

Aivotutkimus on vaikeaa kahdesta syystä. Ensinnäkin aivoja, joita kallo suojaa turvallisesti, ei voi käyttää suoraan. Toiseksi aivojen neuronit eivät regeneroitu, joten kaikki interventiot voivat aiheuttaa peruuttamattomia vahinkoja.

Näistä vaikeuksista huolimatta aivotutkimus ja jotkin sen hoidon muodot (ensisijaisesti neurokirurgiset toimenpiteet) ovat olleet tiedossa jo muinaisista ajoista. Arkeologiset löydöt osoittavat, että jo antiikin aikana ihminen särösi kallon päästä aivoihin. Erityisen intensiivistä aivotutkimusta tehtiin sodan aikana, jolloin oli mahdollista havaita erilaisia ​​päävammoja.

Aivojen vaurioituminen etupuolella tapahtuneen vamman tai rauhan aikana tapahtuneen vamman vuoksi? eräänlainen kokeilu, jossa tietyt aivojen osat tuhoutuvat. Koska tämä on ainoa mahdollinen "kokeilun" muoto ihmisen aivoissa, toinen tärkeä tutkimusmenetelmä oli kokeita laboratorioeläimillä. Tarkasteltaessa tietyn aivorakenteen vahingoittumisen käyttäytymis- tai fysiologisia seurauksia voidaan arvioida sen toimintaa.

Aivojen sähköinen aktiivisuus koe-eläimissä tallennetaan käyttämällä elektrodeja, jotka on sijoitettu pään tai aivojen pinnalle tai tuodaan aivojen aineeseen. Siten on mahdollista määrittää pienten ryhmien neuronien tai yksittäisten neuronien aktiivisuus sekä tunnistaa muutokset ionivirroissa membraanin poikki. Stereotaktisen laitteen avulla, joka antaa mahdollisuuden päästä elektrodiin aivojen tietyssä kohdassa, tutkitaan sen ulottumattomat syvyysosuudet.

Toinen lähestymistapa on poistaa pieniä elävien aivokudoksen alueita, minkä jälkeen sen olemassaoloa pidetään viipaleena, joka sijoitetaan ravintoalustaan, tai solut erotetaan ja tutkitaan soluviljelmissä. Ensimmäisessä tapauksessa voit tutkia neuronien vuorovaikutusta toisessa? yksittäisten solujen elintärkeää toimintaa.

Kun tutkitaan yksittäisten hermosolujen tai niiden ryhmien sähköistä aktiivisuutta aivojen eri alueilla, alkuaktiivisuus kirjataan yleensä ensin, sitten määritetään tietyn vaikutuksen vaikutus solujen toimintaan. Toisen menetelmän mukaan sähköinen impulssi syötetään implantoidun elektrodin läpi lähimpien hermosolujen keinotekoiseksi aktivoimiseksi. Voit siis tutkia aivojen tiettyjen alueiden vaikutuksia sen muille alueille. Tämä sähköstimulaatiomenetelmä oli käyttökelpoinen tutkittaessa keskivälin läpi kulkevia varren aktivoivia järjestelmiä; sitä käytetään myös silloin, kun yritetään ymmärtää, miten oppimisen ja muistin prosessit tapahtuvat synaptisella tasolla.

Sata vuotta sitten kävi selväksi, että vasemman ja oikean pallonpuoliskon toiminnot ovat erilaisia. Ranskalainen kirurgi P. Brock, joka katsoi potilaita, joilla oli aivoverenkiertohäiriö (aivohalvaus), havaitsi, että vain vasemmanpuoliskon puoliskon kärsineet kärsivät puhehäiriöstä. Lisäkokeita puolipallojen erikoistumisesta jatkettiin käyttäen muita menetelmiä, esimerkiksi EEG-tallennusta ja herätettyjä mahdollisuuksia.

Viime vuosina monimutkaisia ​​tekniikoita on käytetty aivojen kuvien (visualisointien) hankkimiseen. Täten tietokonetomografia (CT) on mullistanut kliinisen neurologian, mikä mahdollistaa in vivo yksityiskohtaisen (kerrostetun) kuvan aivorakenteista. Toinen visualisointimenetelmä? positronemissio-tomografia (PET)? antaa kuvan aivojen metabolisesta aktiivisuudesta. Tässä tapauksessa lyhytikäinen radioisotooppi tuodaan henkilöön, joka kerääntyy aivojen eri osiin, ja mitä enemmän, sitä korkeampi niiden metabolinen aktiivisuus. PET: n avulla osoitettiin myös, että useimpien tutkittujen puhefunktiot liittyvät vasempaan pallonpuoliskoon. Koska aivot käyttävät suurta määrää rinnakkaisia ​​rakenteita, PET tarjoaa sellaisia ​​tietoja aivotoiminnoista, joita ei voida saada yksittäisillä elektrodeilla.

Aivotutkimus tehdään yleensä menetelmien yhdistelmällä. Esimerkiksi amerikkalainen neurobiologi R. Sperri, jossa on työntekijöitä, käytti hoitomenetelmänä leikkaamaan eräitä epilepsiaa sairastavia potilaita (molempia puolipalloja yhdistäviä axonipaketteja). Tämän jälkeen näissä potilailla, joilla oli ”split” aivot, tutkittiin puolipallon erikoistumista. Havaittiin, että puheen ja muiden loogisten ja analyyttisten toimintojen osalta vallitseva hallitseva (yleensä vasen) pallonpuolisko on vastuussa, kun taas ei-hallitseva pallonpuolisko analysoi ulkoisen ympäristön tila- ja ajallisia parametreja. Joten se aktivoidaan, kun kuuntelemme musiikkia. Aivojen toiminnan mosaiikkikuvasta käy ilmi, että aivokuoren ja subkortikaalisten rakenteiden sisällä on lukuisia erikoistuneita alueita; näiden alueiden samanaikainen toiminta vahvistaa aivojen käsitettä tietojenkäsittelylaitteena, jossa on rinnakkainen tietojenkäsittely.

Uusien tutkimusmenetelmien myötä ajatukset aivotoiminnoista muuttuvat todennäköisesti. Niiden laitteiden käyttö, joiden avulla voimme saada aivojen eri osien metabolisen aktiivisuuden "kartan" sekä molekyyligeneettisten lähestymistapojen käytön, syventää tietämystämme aivoissa esiintyvistä prosesseista. Katso myös neuropsykologia.

Erilaisilla selkärankaisilla aivot ovat huomattavan samanlaisia. Jos teemme vertailuja neuronien tasolla, havaitsemme sellaisten ominaisuuksien selkeän samankaltaisuuden kuin käytetyt neurotransmitterit, ionikonsentraatioiden vaihtelut, solutyypit ja fysiologiset toiminnot. Peruserot paljastuvat vain selkärangattomiin verrattuna. Selkärangattomat neuronit ovat paljon suurempia; usein ne liittyvät toisiinsa ei kemiallisten, vaan sähköisten synapsien avulla, joita esiintyy harvoin ihmisen aivoissa. Selkärangattomien hermostossa havaitaan joitakin neurotransmittareita, jotka eivät ole ominaista selkärankaisille.

Selkärankaisten keskuudessa aivojen rakenteen erot liittyvät pääasiassa sen yksittäisten rakenteiden suhteeseen. Arvioimalla kalojen, sammakkoeläinten, matelijoiden, lintujen, nisäkkäiden (mukaan lukien ihmiset) aivojen samankaltaisuuksia ja eroja on mahdollista saada useita yleisiä malleja. Ensinnäkin kaikilla näillä eläimillä on sama neuronien rakenne ja toiminnot. Toiseksi selkäydin ja aivokuoren rakenne ja toiminnot ovat hyvin samankaltaisia. Kolmanneksi nisäkkäiden kehitykseen liittyy voimakas lisääntyminen kortikaalisissa rakenteissa, jotka saavuttavat maksimaalisen kehityksen kädellisissä. Sammakkoeläimissä kuori muodostaa vain pienen osan aivoista, kun taas ihmisissä? tämä on hallitseva rakenne. Uskotaan kuitenkin, että kaikkien selkärankaisten aivojen toiminnan periaatteet ovat lähes samat. Erot määräytyvät interneuron-yhteyksien ja vuorovaikutusten lukumäärän mukaan, mikä on korkeampi, sitä monimutkaisempi aivot ovat. Katso myös ANATOMY COMPARATIVE.

Aivot: toiminnot, rakenne

Aivot ovat tietenkin tärkein osa ihmisen keskushermostojärjestelmää.

Tutkijat uskovat, että sitä käytetään vain 8%.

Siksi sen piilotetut mahdollisuudet ovat loputtomia ja niitä ei tutkita. Myöskään lahjakkuuksien ja inhimillisten voimavarojen välillä ei ole mitään yhteyttä. Aivojen rakenne ja toiminta edellyttävät organismin koko elintärkeän aktiivisuuden hallintaa.

Aivojen sijainti kallon luiden suojelussa takaa kehon normaalin toiminnan.

rakenne

Ihmisen aivot ovat luotettavasti suojattuja kallon vahvoilla luuteilla, ja niillä on lähes koko kallon tila. Anatomit erottavat ehdollisesti seuraavat aivojen alueet: kaksi puolipalloa, runko ja aivopuoli.

Toinen jako on myös otettu. Aivojen osat ovat ajallisia, etuosia ja kruunua ja pään takaosaa.

Sen rakenne koostuu yli sadasta miljardista neuronista. Sen massa on yleensä hyvin erilainen, mutta se saavuttaa 1800 grammaa, naisten keskiarvo on hieman pienempi.

Aivot koostuvat harmaasta aineesta. Kuoren koostuu samasta harmaasta aineesta, jonka muodostavat lähes koko tähän elimeen kuuluvat hermosolut.

Sen alla on piilotettu valkeus, joka koostuu hermosolujen prosesseista, jotka ovat johtimia, hermoimpulsseja lähetetään kehosta alikenttään analysointia varten sekä komentoja kuoresta kehon osiin.

Juoksevan aivojen vastuualueet sijaitsevat aivokuoressa, mutta ne ovat myös valkoisessa aineessa. Syviä keskuksia kutsutaan ydinaseiksi.

Edustaa aivorakennetta, sen onton alueen, joka koostuu neljästä kammiosta, syvyyksissä, jotka on erotettu kanavilla, jossa suojaavaa toimintoa suorittava neste kiertää. Ulkopuolella se on suojattu kolmelta kuorelta.

tehtävät

Ihmisen aivot ovat kehon koko kehon elämä pienimmistä liikkeistä korkealle ajattelutoiminnolle.

Aivojen jakaumat ja niiden toiminnot käsittävät reseptorimekanismien signaalien käsittelyn. Monet tutkijat uskovat, että sen tehtäviin kuuluu myös vastuu tunteista, tunteista ja muistista.

Yksityiskohdissa olisi otettava huomioon aivojen perustoiminnot sekä sen osien erityinen vastuu.

liike

Kaikki kehon moottoriaktiivisuus viittaa keskisen gyrus-hoidon hoitoon, joka kulkee parietaalisen lohen etuosan läpi. Liikkeiden keskinäinen koordinointi ja tasapainon ylläpitäminen ovat niskakalvon alueella sijaitsevien keskusten vastuulla.

Niskakyhmän lisäksi tällaiset keskukset sijaitsevat suoraan aivoissa, ja tämä elin vastaa myös lihasmuistista. Siksi aivopuolen toimintahäiriöt johtavat tuki- ja liikuntaelimistön toiminnan häiriöihin.

herkkyys

Kaikkia aistinvaraisia ​​toimintoja ohjaa parietaalilohkon takaa kulkeva keski-gyrus. Tässä on myös keskus, jossa ohjataan kehon asemaa, sen jäseniä.

Sense-elimet

Kuulokohdissa sijaitsevat keskukset ovat vastuussa kuuloherkkyydestä. Visuaalisia tunteita henkilölle tarjoavat pään takana olevat keskukset. Heidän työnsä näkyy selvästi silmäkokeiden taulukossa.

Kääntöjen keskinäinen kytkeytyminen ajallisten ja etupuolisten lohkojen risteyksessä piilottaa keskukset, jotka ovat vastuussa haju-, maku- ja tuntoherkkyydestä.

Puhefunktio

Tämä toiminnallisuus voidaan jakaa kykyyn tuottaa puhetta ja kykyä ymmärtää puhetta.

Ensimmäistä toimintoa kutsutaan moottoriksi, ja toinen on aistillinen. Heistä vastuussa olevat sivustot ovat lukuisia ja sijaitsevat oikealla ja vasemmalla puolipalloilla.

Reflex-toiminto

Ns. Pitkänomainen osasto sisältää alueita, jotka ovat vastuussa elintärkeistä prosesseista, joita tietoisuus ei hallitse.

Näitä ovat sydänlihaksen supistukset, hengitys, verisuonten kapeneminen ja laajentuminen, suojaavat refleksit, kuten repiminen, aivastelu ja oksentelu, sekä sisäelinten sileiden lihasten tilan seuranta.

Shell-toiminnot

Aivoissa on kolme kuoret.

Aivojen rakenne on sellainen, että suojauksen lisäksi jokainen kalvo suorittaa tiettyjä toimintoja.

Pehmeä kuori on suunniteltu varmistamaan normaali verenkierto, jatkuva hapen virtaus keskeytymätöntä toimintaa varten. Myös pienimmät verisuonet, jotka liittyvät pehmeään vaippaan, tuottavat selkäydinnestettä kammioissa.

Araknoidikalvo on alue, jossa neste kiertää, tekee työtä, jota imusolmuke toimii muualla kehossa. Toisin sanoen se suojaa patologisia aineita vastaan ​​pääsemästä keskushermostoon.

Kova kuori on pääkallon luiden vieressä ja varmistaa niiden kanssa harmaan ja valkoisen sylinterin vakauden, suojaa sitä iskuilta, siirtyy mekaanisten iskujen aikana päähän. Myös kova kuori erottaa sen osat.

osastot

Mitä aivot koostuvat?

Aivojen rakenne ja päätoiminnot toteutetaan sen eri osien avulla. Ontogeneesin prosessissa muodostettujen viiden osion elimen anatomian näkökulmasta.

Aivojen hallinnan eri osat ja niiden vastuulla ovat henkilön yksittäisten järjestelmien ja elinten toiminta. Aivot ovat ihmiskehon tärkein elin, sen erityisosastot vastaavat koko ihmiskehon toiminnasta.

pitkulainen

Tämä osa aivoista on luonnollinen osa selkärankaa. Se muodostui ennen kaikkea ontogeneesin prosessissa, ja täällä keskukset sijaitsevat, jotka ovat vastuussa ehdottomista refleksitoiminnoista sekä hengityksestä, verenkierrosta, aineenvaihdunnasta ja muista prosesseista, joita tietoisuus ei hallitse.

Posterioriset aivot

Mikä on aivojen takana?

Tällä alueella on aivopuoli, joka on elimen pienentynyt malli. Takan aivot ovat vastuussa liikkeiden koordinoinnista, kyvystä ylläpitää tasapainoa.

Ja posteriori-aivot ovat paikka, jossa hermoimpulssit välittyvät pikkuaivojen hermosolujen kautta, jotka tulevat sekä raajoista että muista kehon osista, ja päinvastoin, toisin sanoen koko henkilön fyysinen aktiivisuus hallitaan.

keskimääräinen

Tätä aivojen osaa ei ole täysin ymmärretty. Keskipitkää, sen rakennetta ja toimintoja ei ole täysin ymmärretty. On tunnettua, että keskellä, joka vastaa perifeerisestä näystä, reaktio teräviin ääniin on täällä. On myös tunnettua, että aivojen osat sijaitsevat tässä, jotka vastaavat havaintoelinten normaalista toiminnasta.

väli-

Tässä on osio nimeltä thalamus. Se kulkee läpi kaikki hermopulssit, joita kehon eri osat lähettävät puolipallojen keskuksiin. Thalamuksen rooli on valvoa kehon sopeutumista, antaa vasteen ulkoisille ärsykkeille, tukee normaalia aistien havaitsemista.

Välikappaleessa on hypotalamus. Tämä osa aivoista stabiloi perifeeristä hermostoa ja ohjaa myös kaikkien sisäelinten toimintaa. Tässä on on-off-organismi.

Se on hypotalamus, joka säätelee kehon lämpötilaa, verisuonten sävyjä, sisäelinten sileiden lihasten supistumista (peristaltiikkaa) ja muodostaa myös nälän ja kylläisyyden tunteen. Hypotalamus hallitsee aivolisäkettä. Toisin sanoen se on vastuussa hormonaalisen järjestelmän toiminnasta, valvoo hormonien synteesiä.

Lopullinen

Lopullinen aivot ovat yksi aivojen nuorimmista osista. Corpus callosum tarjoaa yhteyden oikean ja vasemman pallonpuoliskon välillä. Ontogeneesin prosessissa se muodostui viimeisestä kaikista sen osista, se muodostaa elimen pääosan.

Lopullisten aivojen alueet suorittavat kaiken korkeamman hermoston toiminnan. Tässä on ylivoimainen määrä konvoluutioita, se on läheisesti yhteydessä subktexiin, sen kautta koko organismin elämää hallitaan.

Aivot, sen rakenne ja toiminnot ovat suurelta osin käsittämätöntä tutkijoille.

Monet tutkijat tutkivat sitä, mutta ne ovat vielä kaukana kaikkien salaisuuksien ratkaisemisesta. Tämän kehon erityispiirre on se, että sen oikea puolipallo ohjaa kehon vasemman puolen työtä ja vastaa myös kehon yleisistä prosesseista, ja vasemman pallonpuoliskon koordinoi kehon oikeaa puolta ja vastaa lahjakkuuksista, kyvyistä, ajattelusta, tunteista ja muistista.

Eräillä keskuksilla ei ole kaksinkertaista vastakkaista pallonpuoliskoa, ne sijaitsevat vasemmanpuoleisissa oikealla puolella ja vasemmalla oikealla.

Yhteenvetona voidaan todeta, että kaikki prosessit, hienosta moottori- taitosta kestävyyteen ja lihasvoimaan, sekä emotionaalinen sfääri, muisti, kyvyt, ajattelu, älykkyys, ovat yhden pienen elimen hallinnassa, mutta silti käsittämätön ja salaperäinen rakenne.

Kirjaimellisesti koko henkilön elämää ohjaa pää ja sen sisältö, joten on niin tärkeää suojata hypotermiaa ja mekaanisia vaurioita vastaan.

Seuraavat solut hallitsevat ihmisen aivoissa

Niinpä aivokuoren kuulovyöhyke sijaitsee ajallisissa lohkoissa ja havaitsee äänimerkkien reseptoreita.

Visuaalinen vyöhyke sijaitsee niskakammioissa. Se havaitsee visuaalisia signaaleja ja muodostaa visuaalisia kuvia.

Haju-alue sijaitsee ajallisten lohkojen sisäpinnalla.

Herkkä vyöhyke (kipu, lämpötila, tuntoherkkyys) sijoitetaan parietaaliseen lohkoon; hänen menetyksensä johtaa tunnehäviöön.

Moottorin keskipiste sijaitsee vasemman pallonpuoliskon etuosassa. Kuoren etuosan lohkojen eniten etuosassa on keskuksia, jotka osallistuvat henkilökohtaisten ominaisuuksien, luovien prosessien ja henkilön asemien muodostumiseen. Ehdollisesti refleksiyhteydet on suljettu aivokuoressa, joten se on elin kokemuksen hankkimiseksi ja keräämiseksi ja organismin mukauttamiseksi jatkuvasti muuttuviin ympäristöolosuhteisiin.

Niinpä eturintaman aivokuoressa on keskushermoston korkein osa, joka säätelee ja koordinoi kaikkien elinten toimintaa. Se on myös ihmisen henkisen toiminnan aineellinen perusta.

Pidät Epilepsia